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To demonstrate the possibility of improving the efficiency of the generalized pulse-spectrum 
technique (GPST) inversion algorithm by implementing special re-structuralization and high 
level parallelism into the system of discretized Fredholm integral equations of the first kind, a 
simple two-parameter inverse problem of two-dimensional linear evolution equation is con- 
sidered. Numerical simulations are carried out to test the feasibility and to study the general 
characteristics of the improved GPST without real measurement data. It is found that the 
improved GPST is not only as robust as the standard GPST but also, possessing the speedup, 
very close to the estimated one by performing the computational complexity analysis based 
upon FL0 count. 0 1987 Academic Press, Inc. 

The so-called “generalized pulse-spectrum technique” (GPST) inversion 
algorithm, a versatile iterative numerical algorithm for solving multi-parameter 
inverse problems of a system of partial differential equations, has been thoroughly 
tested on a large class of small- to medium-sized inverse problems in numerous 
applications since 1974 [l-20] and GPST is found to be quite efficient and stable 
(robust). Moreover, it has been pointed out [21,22] that GPST is basically a com- 
bination of a Newton-like method and te Tikhonov regularization method when the 
inverse problems are formulated as functional minimizing problems in some 
function spaces, and the convergence proofs of GPST for special cases can be found 
also in [21,22]. Recently, many researchers in solving inverse problems have also 
treated the inverse problems as problems in functional minimizing by using different 
methods in nonlinear optimization, e.g., the Dividon-Flectcher-Powell method, the 
steepest descent method, and other Newton-like methods. They have achieved the 
same accuracy and stability but not the same efficiency. Theoretically, the efficiency 
of a numerical algorithm depends on the intrinsic mathematical structure 
of the algorithm, but in practice it depends even more on the skill of software 
implementation of the algorithm which is very much computer-architecture- and 
compiler-dependent. As a possible example of this, the AT & T Bell Laboratories’ 
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implementation of the Karmarkar algorithm for solving problems in linear 
programming at the present seems to achieve higher efficiency than all of the others’ 
implementations. 

As it stands now, the efficiency of the existing GPS’T will not lend itself to be 
useful for solving large-sized inverse problems. Hence there is an urgent need of 
improving the efficiency of the existing GPST inversion algorithm. Here we choose 
to achieve this purpose by preserving the basic mathematical structure of GPST 
and improving its implementation. The major “bottleneck” in the existing G 
lies in the numerical effort for solving the system of discretized Fredholm integral 
equations of the first kind, a Z x KM full matrix equation, by using the Tikhonov 
regularization method. Here K is the number of unknown parameters, M is the 
number of grid points, and 2 is the number of data (measurement) points in both 
space and frequency (spectrum) domains or the number of data points in both 
space and time (pulse) domains. Hence the FL0 (floating point aritbmctic 
operation) count for solving this matrix equation by using the Ti 
regularization method is of O(ZK2M2) + O(K3M3), which is extremely larg 
large-sized inverse problems. 

In this paper, the above-mentioned bottleneck is eliminated by i~trod~c~~~ 
two modifications in the structure of GPST. One of them is based upon the 
re-structuralization of the system of discretized Fredholm integral equations sf t 
first kind so that only a special narrow-banded sparse matrix equation needs to be 
solved by using the Tikhonov regularization method. Although the general 
philosophy of re-structuralization is problem-independent, its details are no 
problem-dependent but also data-point-dependent. The other modification is 
the introduction of parallelism into the system of discretized Fredholm i 
equations of the first kind so that the original large matrix e 
system of smaller decoupled matrix equations 
simultaneously on individual processors of a multi- 
tially on a single-processor computer. 

For the purposes of simplicity and comparison, an outline of the standard G 
for solving simple two-parameter inverse problems of two-dimensional linear 
evolution (wave and diffusion) equations is given in the next section. Then the 
newly improved version of GPST is presented. Next, numerical simulations are 
carried out on a single-processor computer UNIVAC IlOOjSl to test the feasibility 
and to study the intrinsic characteristics of this new version of GPST with com- 
puter-generated data. Finally, discussion of the numerical results and estimation of 
the possible speedup are given in the last section 

GENERALIZED PULSE-SPECTRUM TECHNIQUE (GPST) 

For reasons of simplicity and pure economics, we consider the following simple 
test inverse problems with the special form of unknown coefficient a(x) b(y). 
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akjat2 

a{a(x) b(y) aU/a+ax + a(a(x) b(y) a24/ay)/ay - 

i i 

or =. O<X,Y<l, 

au/at 
’ o<t<co, 

U(X, y, 0) = au(x, y, oyat = 0 or dx, Y, 0) = 0, o<x, y<l, 

au(O, y, tyax = agi, y, tyax = a+, 0, tyay 

= au(x, I, tyay = 0, o<t<co, (1) 

with sources u(x, y, t)=f(x, y, t), (n, ~)ESZ~CO<X, y<l, O<t<oo, and 
measurement u(x, y, t) = h(x, y, t), (x, y) E Q, c 0 <x, y < 1, Q2, n Q2, = 0. The 
re-structuralization will be quite different for other types of inverse problems. 

The first step of GPST calls for the Laplace transformation of (1) so that the 
entire system is transformed from the space-time domain to the space-complex 
frequency domain, Hence the initial-boundary value problem of the hyperbolic or 
parabolic system is transformed into the following boundary value problem of an 
elliptic system, 

s2 
a(a(x) b(y) au/aqax+ a(a(x) b(y) au/ay)/ay - 1 i or u= 0, 

o<x, y< 1, 
OdS<CO, 

s 

and 

auto, y, syax = au(l, y, s)/ax = au(x, O, 3yay 

= aqx, 1, syay = 0, O<S<cO, 

U(x, y, s)= Qx, y, s), (4 Y)EQ,, o<s<Go, 

w, Y, s)= f&K y, s), (4 Y)E-Q*, O<s<cKl, 

(2) 

where U(x, y, s), F(x, y, s), and H(x, y, s) are the Laplace transforms of u(x, y, t), 
f(x, y, t), and h(x, y, t), respectively. Now, the two-parameter inverse problem is to 
determine a(x) and b(y) from (2), F(x, y, s), and H(x, y, s). 

Next, the iteration begins by setting 

U nt~=Un+dUn, a,+,=a,+6a,, 

b ,,+~=bn+&,, N = 0, 1, 2, 3 )...) 
(3) 

where a,, and b. are the initial guesses for the corresponding unknown coefhcients, 
and the b-terms are smaller than their corresponding non-b-terms in some norms. 

Upon substituting (3) into (2) and neglecting terms of order d2 and higher, one 
obtains the same linear system for U, as that for U except with the additional 
subscript “n,” 
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ah(x) b,(Y) awwax+ a(&) b,(Y) mJ~Y)/~Y- U,=O, 

o<x, y< 1, 0<8<53, 

aunto, Y, mx=au,(i, Y, ~~iax=au,wb~iay 
= a u,(x, 1, qay = 0, o<s<co, 

Un(x, Y, 3) = F(x, y, s), (4 Y)EQlY 06s<co, 
and 

Un(X, y, s) = ff(x, Y, s), (x3 Y)Ef&> o<s<co, 

and a similar linear system for 6U,, 

a(a,(-l-) b,(y) a=wxvax + a(4.4 b,(Y) asu,mwY- 

= -ai b,(x) wy) + hk4 b,(Y)1 au,ia.wx 

- ai b,(x) em + hi-4 bh)l au,/a~)iay, 
Q<x, y<l, 

and 

asu,(o, y, syax= asu,(i, y, syax = a6c,gx, 0, syay 
= am,(x, I, syay = 0, o<ssm, 

6U,(x, Y, s) =Q, (X> Y)EQ,, Ods<m, 

dU,(x, y, s) = 0, (x9 Y) EQ2, O<s<co. 

By using the method of Green’s function, setting (x, y) = x at Sz,, and replacing 
U,, 1(x, y, S) by U(x, y, S) and then H(x, y, s), one obtains from (5) a system of 
Fredholm integral equations of the first kind, 

1 1 

ss Gn(Wv ~11 x,cBz (a[(a, 6b, + 6a,b,) au,/axq/ax’ 
0 0 

+ ap, 6b, + h,b,) au,/ayy dxf dy’ 

= (Un(X,S)--H(x,S))lx,,nz, i = 1, 2, 3 ,...) I, (6) 

where G,(x, x’, s) is the Green’s function of (5). 
Equations (3), (4), and (6) form the basic structure of each iteration sf the 

standard GPST inversion algorithm. By using the simple center finite difference 
scheme, one can solve for U, and G, for a fixed set of {s,), j = 1,2,3,..., J. Similarly, 
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Eq. (6) can be discretized simply by using the trapezoidal rule on the same spatial 
computation-grid and for the same set of (s,} to become an ill-conditioned linear 
algebraic system, 

(7) 

which is solved by using the Tikhonov regularization method such as one solves 

= R,T.F,, 

where R, is a IJx 2M’12 rectangular matrix with M being the number of spatial 
grid points. 

In essence, each cycle of iteration consists basically of lirst solving (4) (symmetric 
matrix with half bandwith M1’2) J times and then solving (8) once. By using the 
direct matrix solvers, e.g., Gaussian elimination and LU decomposition, the 
asymptotic FL0 count for solving (4) J times is of O(JM’)/iteration, for forming 
(8) it is 4IJM/iteration, and for solving (8) it is (8/3) M3’*/iteration. Hence the total 
asymptotic FL0 count per iteration of the standard GPST inversion algorithm is 
O{M($M’/2 + 4IJ+ JM)} which is definitely too large for large M. In general, the 
unknown coefficient k(x, y) # a(x) b(y); then the corresponding total asymptotic 
FL0 count per iteration is O{M2(iM+IJ+ J)}. 

EFFICIENCY IMPROVEMENT OF GPST 

To improve the efficiency of the existing GPST, we elect to achieve this goal by 
preserving the basic mathematical structure of GPST and improving its implemen- 
tation. From the asymptotic FL0 count of the existing GPST given in the previous 
section, it is clear that in general the “bottleneck” lies in the formation and 
Gaussian elimination of (8). Hence our attention is focused on the elimination of 
this bottleneck by introducing two modifications into the detailed structure of the 
existing GPST. 

The first step is to restructure the system of discretized Fredholm integral 
equations of the first kind so that the new matrix equation (7) is either smaller in 
size or possessing some preferred special structures. However, it is difficult to 
achieve this by examining the system of discretized Fredholm integral equations of 
the first kind as they are. A better way is to examine the discretized partial differen- 
tial equation (5) from which the system of Fredholm integral equations of the first 
kind are derived. Here the discretized equation (5) is 
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+q&l -4b,-b,-,)6U~,~-,-a,(b,+,+4b,-b,-,)6U~,,+, 

+b,(~,+l-4~,-~,-l)~~~-l.~-b,(~,+l+4~,-a,-l~~~~+l,,~ 

p, q=2, 3, 4 )“.) P- l,j= 1, 2, 3 ,...) J, (9) 

where P- 1 = I/Ax= l/Ay, Vi,, z U{ (p- 1) Ax, (q- 1) Ay, s,], and the subscri 
“n” is omitted for convenience. It is clear that (9) is a linear relationship between 
(Ja,, 6b,) and LsU;+p,y. 

The standard GPST calls for setting “U$, = H;,q - U;,p,4 at the grid points in (9) 
only. Now the modification in the GPST algorithm calls for further approximations 
by setting 8U;,p,q = 0 elsewhere for their smallness when the initial guess is close 
enough to the exact solution and neglecting equations of (9) corresponding to non- 
data grid points for their roles being less important in solving the inverse problem. 
We hope that the additiona errors caused by these additional approximations will 
be small and automatically taken care of by the iterative process of GPST in the 
form of slower convergence. With the above procedure, one can pack (9) into a 
very compact sparse matrix equation. However, the compact form depends very 
much on the number and the location of the data measurement points. For the pur- 
pose of demonstration, the data points are assumed to be (p, q) = (2,2), (3,2), 
(4, 2) ,..., (P- 1, 2), (P- 1, 3), (P- 1, 4) ,..., (P- 1, P- 1); this choice of data psi 
(p, 9) is not part of our algorithm. Then Eq. (9) has the compact form 

En. =L,, 

where E,, is a J(2P- 5) x 2P sparse matrix of the following structure, 

Bj=2 

$4 
n 

7 
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with Ad being (P- 2) x P upper tri-diagonal matrices, B:, being (P- 2) x P tri- 
column matrices with first three columns nonzero, CL being (P- 3) x P tri-column 
matrices with last three columns nonzero, D; being (P - 3) x P upper tri-diagonal 
matrices, and L, is a J(2P- 5)-dimensional full vector. 

Per iteration, the asymptotic FL0 count for forming the regularized normal 
equation (10) is 24JM”2 which is much smaller compared to 8JM3j2 
(I- 2P = 2M”*) for the standard GPST. However, the asymptotic FL0 count for 
solving the regularized normal equation is still the same. 

Next, a simple parallelism is introduced into the system (10) to further improve 
the efficiency. This can be achieved by splitting (10) into two uncoupled equations, 

E1,;6a,=L,, 

E,,, . db, = L,, 

where 

and 
E,, = (A!, CA, A;, C:,..., A;, C;,’ 

(13) 
E,, = (B;, D,l,, B:, D;,..., B:, D;,‘. 

This splitting can be achieved for any given set of (p, 4); different choices of (p, q) 
will lead to different sparse structures of El,, and Ezrr. 

Then the regularized normal equation of (12) is 

(ET,‘El,+alI).6a,,=ET,,.L,,, 

(ET,, ’ E,, + LQ I) .6b,, = ET,, L,,. 
(14) 

It is clear that da, and 6b, can be solved either simulataneously on individual 
processors of a two-processor computer or sequentially on a single-processor 
computer. 

In this case, the asymptotic FL0 count for forming (14) is still 24JM”‘/iteration. 
But the asymptotic FL0 counts for solving (14) simulataneously or sequentially are 
fM3j2/iteration or fM3/*/iteration, respectively, which are improvements over that 
of the standard GPST by a factor of eight or four, respectively. However, the num- 
ber of iterations for numerical convergence probably will increase. Finally, the 
speedup (efficiency improvement) of the improved GPST over the standard GPST 
on a two-processor computer can be estimated by 

(15) 

For this special case, k(x, y) = a(x) b(v), the speedup is diminutive due to the fact 
that the bottleneck lies in the effort of solving the initial-boundary value problem 
(4) and there has been no improvement made for this. On the other hand, the 
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FIG. 1. Comparison of the calculated ahi and bN(y) ... and the exact a*(x) and b*(y) --, 
with the initial guesses q,(x) and b,(y) ~ - ~ 

speedup of the improved GPST over the standard GPST in the backwar 
calculation, solving for aa,? and 6b,(y), can be estimated by 

i.e., Min(M/3,24J) 5 SZB 5 Max(M/3,245), which is very good. 
In general, the computational effort for forming and solving the regularized 

equation with full matrix in the backward calculation is much larger than 
solving the band sparse matrix several times in the forward calculation. The 
re-structuralization, which eliminates a few less-important equations corresponding 
to certain non-data grid points from (9) and sets 6 UL,~,, = 0 at these grid points, will 
make the matrix in the regularized equation not only smaller but also sparse. Hence 
the major contribution to “S’ will come from the backward calculation which may 
be substantially large. 

NUMERICAL SIMULATION 

In order to test the feasibility and to study the general characteristics of the 
improved GPST computational algorithm for solving the special two-parameter 
inverse problems of the two-dimensional linear evolutional equations without real 
measurement data, the following numerical simulation procedure is carried out. A 

A( 
2.0 

-------- 

1.5 

OWV 1.0 

FIG. 2. Same as Fig. I. 
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A(X) 2.5 --_--- ---- ---------- B( ______ - __________ -___ 2.5 P 

FIG. 3. Same as Fig. 1. 

direct problem is solved for a given coefficient k*(x, v) = a*(x) b*(6) to obtain the 
simulated measurement data, and the improved GPST is used to see whether a*(x) 
and b*(v) are recovered or not. First, one chooses a k*(x, y) which represents the 
correct coefficient, and also one chooses the source f(x, y, t) which represents a 
part of the measured data. Its Laplace transform F(x, y, s) is numerically computed 
for a chosen discrete set of s = s,, j= 1,2,3 ,..., J. Then the boundary value problem 
of the positive-definite elliptic partial differential equation (2) is solved by using the 
simple center finite difference scheme; thus one generates the rest of the 
measurement data H(x, y, sI), j= 1,2, 3 ,..,, J. Next, k,(x, y) = aO(x) b,(y) is chosen. 
Hence upon solving (3), (4) and (14) numerically, k,(x, y) = al(x) b,(y) is 
obtained. k,(x, v) = Q(X) b,(y) can be obtained in a similar manner. One continues 
this procedure until finally a numerical limit k,(x, JJ) = a,(x) b,&) is reached. 
Other than the truncation, round-off, numerical integration, and finite difference 
approximation errors in both generating the numerical data and computing uN(x) 
and b,,,(y), any norm of a*(x) b*(y)--,,,(x) b,,,(y) can be used as a criterion for 
evaluating the performance of the improved GPST inversion algorithm. 

The numerical simulation here is carried out for a general class of u*(x) and 
b*(y), e.g., monotonic functions, piecewise-linear continuous functions, and 
oscillatory functions. For simplicity, a unit square is chosen as the spatial domain 
which is divided uniformly into one hundred square subdomains. A single point 
source U(X, y, t) = e-’ is located in the center of the spatial domain. The data 

::-;x~~” 
0 0.5 1.0 0 1.0 

FIG. 4. Same as Fig. 1. 
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n(xl------ ------------ W _____ - _--- -- ..-__-__- _ 
2.5 2.5 

2.0 2.0 

1.5 1.5 

1.0 X 1.0 Y 
0 0.5 1.0 0 0.5 1.0 

FIG. 5. Same as Fig. I. 

measurement points are located at the grid points (xp, JJ,) = (p, 4) = (2,2), (3,2). 
(4, 2) ,..., (10, 2), (10, 3), (10,4) ,..., (10, 10). The discrete values of s for the diffusion 
equation used here are 1, 2, 3,4, and 5, and the corresponding values for the wave 
equation are 1, 2 , I’* 3”’ 2 and 5”‘. The value for the regularization parameter CE is 
0.05 for all examples, although it is not the optimum value for every example. 

It is found that CPU times on the UNIVAC llOO/gl for each iteration of the 
improved GPST and the standard GPST are approximately 3.5 and 5.2 s, respec- 
tively. The numerical results are plotted in Figs. 1-5. The number of iterations 
needed for the numerical convergence for all examples and their relative maximum 
pointwise errors are tabulated in the following table. 

Fig. # N 
Maxla*(x) -a,,(x)\ Maxi!?*(y) - h,,dy)i 

Max)a*(x)l Max(b*(y)l 

1 5 0.09 0.95 
2 5 0.06 0.04 
3 10 0.12 0.11 
4 5 0.05 0.07 
5 10 0.11 0.12 

DISCUSSION 

From the results of numerical simulation, it seems to be clear that the improved 
GPST is as robust and accurate as the standard GPST. Moreover, at least for the 
simple test inverse problem here, the results of numerical simulation have 
demonstrated three things: (I) The efficiency of the standard GPST is successfully 
improved by the introduction of re-structuralization and high level parallelism into 
the system of discretized Fredholm integral equations of the first kind; (II) the 
speedup can be estimated with reasonable accuracy by performing the com- 
putational complexity analysis based upon FL0 counting, e.g., the actual S, per 
iteration is - 1.49 while the estimation of S, per iteration from the formula 
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corresponding to (15) is N 1.72; and (III) the number of iterations needed for the 
numerical convergence of the improved GPST is only slightly larger than that for 
the standard GPST, e.g., N 25 %. 

There seems to be no reason that the above three phenomena should not be true 
for more general cases. Hence we believe that the introduction of the re-struc- 
turalization and high level parallelism will make GPST super efficient and the com- 
putational complexity analysis based upon FL0 count can be realistically used as 
an important tool to estimate the efliciency/speedup in improving the GPST inver- 
sion algorithm before its implementation on a computer. In these regards, the 
efforts of programming the parallel-structured GPST (based upon the 
improvements presented in this paper) on a CRAY X-MP4 for various large scale 
practical applications have just begun, and an analysis of the speedup of the general 
parallel-structured GPST based upon the computational complexity analysis will be 
given in the near future. 
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